Part Number Hot Search : 
ADG1408 2SD96 PE4151 B04BN 331MH C1505 11823MBX EM78P260
Product Description
Full Text Search
 

To Download S-8424AAAPA-TF-G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  s-8424a series www.sii-ic.com battery backup switching ic ? seiko instruments inc., 2001-2010 rev.3.0 _00 seiko instruments inc. 1 the s-8424a series is a cmos ic designed for use in the switching circuits of primary and backup power supplies on a single chip. it consists of two voltage regulators, three voltage detectors, a power supply switch and its controller, as well as other functions. in addition to the switching function between the primary and backup power supply, the s-8424a series can provide the micro controllers with three types of voltage detection output signals corre sponding to the power supply voltage. moreover adopting a special sequence for switch control enables the effective use of the backup power supply, making this ic ideal for configuring a backup system. ? features ? low power consumption normal operation: 15 a max. (v in = 6 v) backup: 2.1 a max. ? voltage regulator output voltage tolerance : 2 % output voltage: independently selectable in 0. 1 v steps in the range of 2.3 v to 5.4 v ? three built-in voltage detectors (cs, preend , reset ) detection voltage precision: 2 % detection voltage: selectable in 0.1 v steps in the range of 2.4 v to 5.3 v (cs voltage detector) selectable in 0.1 v steps in the range of 1.7 v to 3.4 v ( preend , reset voltage detector) ? switching circuit for primary power supply and backup power supply configurable on one chip ? efficient use of backup power supply possible ? special sequence backup voltage is not output when the primary power supply voltage does not reach the initial voltage at which the switch unit operates. ? lead-free, sn 100%, halogen-free *1 *1. refer to ? ? product name structure ? for details. ? packages ? 8-pin tssop ? 8-pin son(b) ? applications ? video camera recorders ? still video cameras ? memory cards ? sram backup equipment
battery backup switching ic s-8424a series rev.3.0 _00 2 seiko instruments inc. ? product name structure 1. product name (1) 8-pin tssop s-8424a xx ft - tb - x ic direction in tape specification package code ft: 8-pin tssop serial code environmental code u: lead-free (sn 100%), halogen-free g: lead-free (for details, please contact our sales office) (2) 8-pin son(b) s-8424a xx pa - tf - g ic direction in tape specification package code pa: 8-pin son(b) serial code environmental code g: lead-free (for details, please contact our sales office) 2. package drawing code package name package tape reel environmental code = g ft008-a-p- sd ft008-e-c-sd ft008-e-r-sd 8-pin tssop environmental code = u ft008-a-p- sd ft008-e-c-sd ft008-e-r-s1 8-pin son(b) pa008-b-p-sd pa008-b-c-sd pa008-b-r-sd
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 3 3. product name list package output voltage (v) cs voltage (v) reset voltage (v) preend voltage (v) switch voltage (v) part no. type v ro v out ? v det1 + v det1 ? v det2 + v det2 ? v det3 + v det3 v sw1 s-8424aaaft-tb-x 8-pin tssop 3.000 3.000 3.300 3.401 2.200 2.312 2.600 2.748 + v det1 0.85 S-8424AAAPA-TF-G 8-pin son(b) s-8424aabft-tb-x 8-pin tssop 3.300 3.300 4.000 4.129 2.300 2.420 2.500 2.640 + v det1 0.77 s-8424aacft-tb-x 8-pin tssop 3.200 3.200 3.300 3.401 2.400 2.528 2.600 2.748 + v det1 0.85 s-8424aadft-tb-x 8-pin tssop 5.000 5.000 4.600 4.753 2.300 2.420 2.500 2.640 + v det1 0.77 s-8424aaeft-tb-x 8-pin tssop 3.150 3.150 4.200 4.337 2.300 2.420 2.500 2.640 + v det1 0.77 s-8424aafft-tb-x 8-pin tssop 3.200 3.200 4.400 4.545 2.400 2.528 2.600 2.748 + v det1 0.77 s-8424aagft-tb-x 8-pin tssop 2.800 2.800 4.400 4.545 2.400 2.528 2.600 2.748 + v det1 0.77 s-8424aahft-tb-x 8-pin tssop 5.000 5.000 4.600 4.753 2.550 2.690 2.700 2.856 + v det1 0.77 s-8424aajft-tb-x 8-pin tssop 3.100 3.100 4.400 4.545 2.200 2.312 2.600 2.748 + v det1 0.77 s-8424aakft-tb-x 8-pin tssop 3.200 3.200 4.600 4.753 2.400 2.528 2.600 2.748 + v det1 0.77 caution set the cs voltage so that the switch voltage (v sw1 ) is equal to or greater than the reset detection voltage ( ? v det2 ). remark 1. the selection range is as follows. v ro , v out : 2.3 to 5.4 v (0.1 v steps) ? v det1 : 2.4 to 5.3 v (0.1 v steps) ? v det2 : 1.7 to 3.4 v (0.1 v steps ) ? v det3 : 1.7 to 3.4 v (0.1 v steps) v sw1 : + v det1 0.85 or + v det1 0.77 2. if a product with a voltage other than above is required, contact our sales representative. 3. x: g or u 4. please select products of environmental code = u for sn 100%, halogen-free products.
battery backup switching ic s-8424a series rev.3.0 _00 4 seiko instruments inc. ? block diagram vbat v sw2 detector m1 cs voltage detector v sw1 detector switch controller vout reset reset voltage detector cs vin reg2 reg1 vro preend preend voltage detector vss figure 1 block diagram
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 5 ? pin configurations table 1 pin no. symbol description 1 vss ground 2 preend output pin of preend voltage detector 3 vbat *1 backup power supply input pin 4 cs output pin of cs voltage detector 5 reset output pin of reset voltage detector vss preend vbat cs vro vin vout reset 8-pin tssop top view 1 2 3 4 8 7 6 5 6 vout *2 output pin of voltage regulator 2 figure 2 7 vin *3 primary power supply input pin 8 vro *4 output pin of voltage regulator 1 *1 to *4. mount capacitors between vss (gnd pin) and the vin, vbat, vout, and vro pins. (refer to the ?standard circuit? ) table 2 pin no. symbol description 1 vss ground 2 preend output pin of preend voltage detector 3 vbat *1 backup power supply input pin 4 cs output pin of cs voltage detector 5 reset output pin of reset voltage detector vss pre end vbat cs vro vin vout reset 8-pin son(b) top view 8 7 6 5 1 2 3 4 6 vout *2 output pin of voltage regulator 2 figure 3 7 vin *3 primary power supply input pin 8 vro *4 output pin of voltage regulator 1 *1 to *4. mount capacitors between vss (gnd pin) and the vin, vbat, vout, and vro pins. (refer to the ?standard circuit? )
battery backup switching ic s-8424a series rev.3.0 _00 6 seiko instruments inc. ? absolute maximum ratings table 3 absolute maximum ratings (unless otherwise specified: ta = 25 c) parameter symbol ratings unit primary power supply input voltage v in v ss ? 0.3 to v ss + 18 v backup power supply input voltage v bat output voltage of voltage regulator v ro , v out v ss ? 0.3 to v in + 0.3 cs output voltage v cs v ss ? 0.3 to v ss + 18 reset output voltage reset v preend output voltage preend v power dissipation 8-pin tssop p d 300 (when not mounted on board) mw 700 *1 8-pin son(b) 300 (when not mounted on board) 750 *1 operating ambient temperature t opr ? 40 to + 85 c storage temperature t stg ? 40 to + 125 *1. when mounted on board [mounted board] (1) board size: 114.3 mm 76.2 mm t1.6 mm (2) board name: jedec standard51-7 caution the absolute maximum ratings are rated values exceeding which the product could suffer physical damage. these values must therefore not be exceeded under any conditions. (1) when mounted on board (2) when not mounted on board 0 50 100 150 600 400 200 0 power dissipation p d (mw) ambient temperature ta ( c) 500 300 100 700 800 8-pin tssop 8-pin son(b) 0 50 100 150 300 200 100 0 power dissipation p d (mw) ambient temperature ta ( c) 400 8-pin tssop 8-pin son(b) figure 4 power dissipation of package
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 7 ? electrical characteristics 1. s-8424aaaxx table 4 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 7.2 v, i ro = 3 ma 2.940 3.000 3.060 v 1 dropout voltage 1 v drop1 v in = 7.2 v, i ro = 3 ma ? 41 59 mv load stability 1 v ro1 v in = 7.2 v, i ro = 0.1 to 10 ma ? 50 100 mv input stability 1 v ro2 v in = 4 to 16 v, i ro = 3 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 7.2 v, i out = 23 ma 2.940 3.000 3.060 v dropout voltage 2 v drop2 v in = 7.2 v, i out = 23 ma ? 187 252 mv load stability 2 v out1 v in = 7.2 v, i out = 0.1 to 60 ma ? 50 100 mv input stability 2 v out2 v in = 4 to 16 v, i out = 23 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 3. 234 3.300 3.366 v 2 cs release voltage + v det1 ? 3.319 3.401 3.482 v reset detection voltage ? v det2 v out voltage detection 2.156 2.200 2.244 v reset release voltage + v det2 ? 2.256 2.312 2.367 v preend detection voltage ? v det3 v bat voltage detection 2.548 2.600 2.652 v preend release voltage + v det3 ? 2.682 2.748 2.814 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.83 + v det1 0.85 + v det1 0.87 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 3.6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 3.6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ?section. voltage regulator voltage detector switch unit total
battery backup switching ic s-8424a series rev.3.0 _00 8 seiko instruments inc. 2. s-8424aabxx table 5 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 30 ma 3.234 3.300 3.366 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 30 ma ? 356 474 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 40 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 30 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 3.234 3.300 3.366 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 60 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 3. 920 4.000 4.080 v 2 cs release voltage + v det1 ? 4.030 4.129 4.228 v reset detection voltage ? v det2 v out voltage detection 2.254 2.300 2.346 v reset release voltage + v det2 ? 2.362 2.420 2.478 v preend detection voltage ? v det3 v bat voltage detection 2.450 2.500 2.550 v preend release voltage + v det3 ? 2.576 2.640 2.703 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 9 3. s-8424aacxx table 6 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 3.6 v, i ro = 15 ma 3.136 3.200 3.264 v 1 dropout voltage 1 v drop1 v in = 3.6 v, i ro = 15 ma ? 181 243 mv load stability 1 v ro1 v in = 3.6 v, i ro = 0.1 to 20 ma ? 50 100 mv input stability 1 v ro2 v in = 3.6 to 16 v, i ro = 15 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 3.6 v, i out = 15ma 3.136 3.200 3.264 v dropout voltage 2 v drop2 v in = 3.6 v, i out = 15 ma ? 123 167 mv load stability 2 v out1 v in = 3.6 v, i out = 0.1 to 20 ma ? 50 100 mv input stability 2 v out2 v in = 3.6 to 16 v, i out = 15 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 3. 234 3.300 3.366 v 2 cs release voltage + v det1 ? 3.319 3.401 3.482 v reset detection voltage ? v det2 v out voltage detection 2.352 2.400 2.448 v reset release voltage + v det2 ? 2.467 2.528 2.589 v preend detection voltage ? v det3 v bat voltage detection 2.548 2.600 2.652 v preend release voltage + v det3 ? 2.682 2.748 2.814 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.83 + v det1 0.85 + v det1 0.87 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 3.6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 3.6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic s-8424a series rev.3.0 _00 10 seiko instruments inc. 4. s-8424aadxx table 7 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 30 ma 4.900 5.000 5.100 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 30 ma ? 356 474 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 40 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 30 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 4.900 5.000 5.100 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 60 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 4. 508 4.600 4.692 v 2 cs release voltage + v det1 ? 4.639 4.753 4.867 v reset detection voltage ? v det2 v out voltage detection 2.254 2.300 2.346 v reset release voltage + v det2 ? 2.362 2.420 2.478 v preend detection voltage ? v det3 v bat voltage detection 2.450 2.500 2.550 v preend release voltage + v det3 ? 2.576 2.640 2.703 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to +85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to +85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 11 5. s-8424aaexx table 8 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 30 ma 3.087 3.150 3.213 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 30 ma ? 356 474 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 30 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 30 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 3.087 3.150 3.213 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 60 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 4. 116 4.200 4.284 v 2 cs release voltage + v det1 ? 4.233 4.337 4.441 v reset detection voltage ? v det2 v out voltage detection 2.254 2.300 2.346 v reset release voltage + v det2 ? 2.362 2.420 2.478 v preend detection voltage ? v det3 v bat voltage detection 2.450 2.500 2.550 v preend release voltage + v det3 ? 2.576 2.640 2.703 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to +85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to +85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic s-8424a series rev.3.0 _00 12 seiko instruments inc. 6. s-8424aafxx table 9 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 30 ma 3.136 3.200 3.264 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 30 ma ? 356 474 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 30 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 30 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 3.136 3.200 3.264 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 50 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 4. 312 4.400 4.488 v 2 cs release voltage + v det1 ? 4.436 4.545 4.654 v reset detection voltage ? v det2 v out voltage detection 2.352 2.400 2.448 v reset release voltage + v det2 ? 2.467 2.528 2.589 v preend detection voltage ? v det3 v bat voltage detection 2.548 2.600 2.652 v preend release voltage + v det3 ? 2.682 2.748 2.814 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 13 7. s-8424aagxx table 10 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 30 ma 2.744 2.800 2.856 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 30 ma ? 356 474 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 30 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 30 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 2.744 2.800 2.856 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 50 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 4. 312 4.400 4.488 v 2 cs release voltage + v det1 4.436 4.545 4.654 v detection voltage ? v det2 v out voltage detection 2.352 2.400 2.448 v reset release voltage + v det2 2.467 2.528 2.589 v preend detection voltage ? v det3 v bat voltage detection 2.548 2.600 2.652 v preend release voltage + v det3 2.682 2.748 2.814 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic s-8424a series rev.3.0 _00 14 seiko instruments inc. 8. s-8424aahxx table 11 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 30 ma 4.900 5.000 5.100 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 30 ma ? 356 474 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 40 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 30 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 4.900 5.000 5.100 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 60 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 4. 508 4.600 4.692 v 2 cs release voltage + v det1 4.639 4.753 4.867 v detection voltage ? v det2 v out voltage detection 2.499 2.550 2.601 v reset release voltage + v det2 2.625 2.690 2.754 v preend detection voltage ? v det3 v bat voltage detection 2.646 2.700 2.754 v preend release voltage + v det3 2.787 2.856 2.924 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 15 9. s-8424aajfxx table 12 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 10 ma 3.038 3.100 3.162 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 10 ma ? 123 167 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 15 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 10 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 3.038 3.100 3.162 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 60 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 4. 312 4.400 4.488 v 2 cs release voltage + v det1 ? 4.436 4.545 4.654 v reset detection voltage ? v det2 v out voltage detection 2.156 2.200 2.244 v reset release voltage + v det2 ? 2.256 2.312 2.367 v preend detection voltage ? v det3 v bat voltage detection 2.548 2.600 2.652 v preend release voltage + v det3 ? 2.682 2.748 2.814 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic s-8424a series rev.3.0 _00 16 seiko instruments inc. 10. s-8424aakxx table 13 electrical characteristics (unless otherwise specified: ta = 25 c) parameter symbol conditions min. typ. max. unit test circuit output voltage 1 v ro v in = 6 v, i ro = 10 ma 3.136 3.200 3.264 v 1 dropout voltage 1 v drop1 v in = 6 v, i ro = 10 ma ? 123 167 mv load stability 1 v ro1 v in = 6 v, i ro = 0.1 to 15 ma ? 50 100 mv input stability 1 v ro2 v in = 6 to 16 v, i ro = 10 ma ? 5 20 mv output voltage temperature coefficient 1 ro ro vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c output voltage 2 v out v in = 6 v, i out = 50 ma 3.136 3.200 3.264 v dropout voltage 2 v drop2 v in = 6 v, i out = 50 ma ? 401 540 mv load stability 2 v out1 v in = 6 v, i out = 0.1 to 60 ma ? 50 100 mv input stability 2 v out2 v in = 6 to 16 v, i out = 50 ma ? 5 20 mv output voltage temperature coefficient 2 out out vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c primary power input voltage v in ? ? ? 16 v cs detection voltage ? v det1 v in voltage detection 4. 508 4.600 4.692 v 2 cs release voltage + v det1 ? 4.639 4.753 4.867 v reset detection voltage ? v det2 v out voltage detection 2.352 2.400 2.448 v reset release voltage + v det2 ? 2.467 2.528 2.589 v preend detection voltage ? v det3 v bat voltage detection 2.548 2.600 2.652 v preend release voltage + v det3 ? 2.682 2.748 2.814 v operating voltage v opr v in or v bat 1.7 ? 16 v detection voltage temperature coefficient 1det 1det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 2det 2det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 3det 3det vta v ?? ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c sink current i sink v ds = 0.5 v, v in = v bat = 2.0 v reset 1.50 2.30 ? ma 3 preend 1.50 2.30 ? ma cs 1.50 2.30 ? ma leakage current i leak v ds = 16 v, v in = 16 v ? ? 0.1 a switch voltage v sw1 v bat = 2.8 v, v in voltage detection + v det1 0.75 + v det1 0.77 + v det1 0.79 v 4 cs output inhibit voltage v sw2 v bat = 3.0 v, v out voltage detection v out 0.93 v out 0.95 v out 0.97 v 5 v bat switch leakage current i leak v in = 6 v, v bat = 0 v ? ? 0.1 a 6 v bat switch resistance r sw v in = open, v bat = 3.0 v, i out = 10 to 500 a ? 30 60 7 switch voltage temperature coefficient 1sw 1sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 4 cs output inhibit voltage temperature coefficient 2sw 2sw vta v ? ta = ? 40 c to + 85 c ? 100 ? ppm/ c 5 current consumption i ss1 v in = 6 v, v bat = 3.0 v, unload ? 7 15 a 8 i bat1 ? 0.26 0.50 a i bat2 v in = open, v bat = 3.0 v, unload ta = 25 c ? 1.0 2.1 a ta = 85 c ? ? 3.5 a backup power supply input voltage v bat ? 1.7 ? 4.0 v 7 remark the number in the test circuit column corresponds to the circuit number in the ? test circuit ? section. voltage regulator voltage detector switch unit total
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 17 ? test circuit 1. 2. v 10 f vro or vout v in vin vss vss reset vin vbat v vout v v cs 100 k v in 100 k preend 100 k v v bat v to measure v det3 , apply 6 v to vin. 3. 4. v ds v in vin vss cs reset a a vbat vout preend a v bat v in vout vin vss vbat v v measure the value after applying 6 v to vin. 5. 6. vout vin vss cs f.g . v bat vbat oscilloscope oscilloscope 100 k vss a v in vin vbat 7. 8. i out v bat vout vin vss vbat v v in leave open and measure the value after applying 6 v to vin. v bat v in vin vss vbat a a i bat i ss to measure i bat2 , apply 6 v to vin and then leave vin open and measure i bat . figure 5 test circuit
battery backup switching ic s-8424a series rev.3.0 _00 18 seiko instruments inc. ? operation timing chart v in (v) v out (v) v bat (v) v ro (v) v cs (v) () vv reset () vv preend remark cs, preend and reset are pulled up to v out . y-axis is an arbitrary scale. figure 6 operation timing chart
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 19 ? operation the internal configuration of the s-8424a series is as follows. ? voltage regulator 1, which stabilizes input voltage (v in ) and outputs it to v ro ? voltage regulator 2, which stabilizes input voltage (v in ) and outputs it to v out ? cs voltage detector, which monitors input voltage (v in ) ? preend voltage detector, which monitors output voltage (v bat ) ? reset voltage detector, which monitors output voltage (v out ) ? switch unit the functions and operations of the abov e-listed elements are described below. 1. voltage regulators the s-8424a series features on-chip voltage regulators with a small dropout voltage. the voltage of the vro and vout pins (the output pins of the voltage regulator) can separately be selected for the output voltage in 0.1 v steps between the range of 2.3 to 5.4 v. [dropout voltage v drop1 , v drop2 ] assume that the voltage output from the vro pin is v ro(e) under the conditions of output voltage 1 described in the electrical characteristics table. v in1 is defined as the input vo ltage at which output voltage from the vro pin becomes 98% of v ro(e) when the input voltage v in is decreased. then, the dropout voltage v drop1 is calculated by the following expression. v drop1 = v in1 ? v ro(e) 0.98 similarly, assume that the voltage of the vout pin is v out(e) under the conditions of output voltage 2 described in the electrical characteristics table. v in2 is defined as the input voltage at which the output voltage from the vout pin becomes 98% of v out(e) . then, the dropout voltage v drop2 is calculated by the following expression. v drop2 = v in2 ? v out(e) 0.98 2. voltage detector the s-8424a series incorporates three high-precis ion, low power consuming voltage detectors with hysteresis characteristics. the power of the cs voltage detector is supplied from the vin and vbat pins. therefore, the output is stable as long as the primary or backup power supplies are within the operating voltage range (1.7 to 16 v). all outputs are nc h open-drain, and need pull-up resistors of about 100 k . 2.1 cs voltage detector the cs voltage detector monitors the input voltage v in (vin pin voltage). the detection voltage can be selected from between 2.4 and 5.3 v in 0.1 v steps. the re sult of detection is output at the cs pin: ?low? for lower voltage than the detection level and ?high? for higher voltage than the release level (however, when the vout pin voltage is the cs output inhibit voltage (v sw2 ), a low level is output). input voltage output voltage release voltage detection voltage figure 7 definition of detection and release voltages
battery backup switching ic s-8424a series rev.3.0 _00 20 seiko instruments inc. 2.2 preend voltage detector the preend voltage detector monitors the input voltage v bat (vbat pin voltage). the detection voltage can be selected from between 1.7 v and 3.4 v in 0. 1 v steps. a higher voltage can also be seclected keeping a constant difference with the reset voltage. this function enables the warning that the backup battery is running out. the detection result is output to the preend pin: ?low? for lower voltages than the detection voltage and ?high? for higher voltages t han the release voltage. the power supply of the preend voltage detector is supplied from the vin pin. the output is valid only when the voltage is supplied from the vin pin to the vout pin (v in v sw1 ). the output is the low level when the voltage is supplied from the vbat pin to the vout pin (v in < v sw1 ). 2.3 reset voltage detector the reset voltage detector monitors the output voltage v out (vout pin voltage). the detection voltage can be selected from between 1.7 v and 3.4 v in 0. 1 v steps. the result of detection is output at the reset pin: ?low? for lower voltages than the det ection level and ?high? for higher voltages than the release level. reset outputs the normal logic if the v out pin voltage is 1.0 v or more. caution the preend and reset voltage detectors use the different pins, respectively. practically, the current is taken from the vbat side, and consider the i/o voltage difference (v dif ) of m1 when m1 is on. 3. switch unit the switch unit consists of the v sw1 and v sw2 detectors, a switch controller, voltage regulator 2, and switch transistor m1 (refer to ? figure 8 switch unit?). reg2 vout m1 vbat vin switch controller v sw1 detector v sw2 detector figure 8 switch unit 3.1 v sw1 detector the v sw1 detector monitors the power supply voltage v in and sends the results of detection to the switch controller. the detection voltage (v sw1 ) can be set to 77 2% or 85 2% of the cs release voltage + v det1 .
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 21 3.2 v sw2 detector the v sw2 detector monitors the vout pin voltage and k eeps the cs release voltage output low until the vout pin voltage rises to v sw2 voltage . the cs pin output then changes fr om low to high if the vin pin voltage is more than the cs release voltage ( + v det1 ) when the vout pin voltage rises to 95 2% of the output voltage of voltage regulator 2 (v out ). the cs pin output changes fr om high to low regardless of the v sw2 voltage when the vin pin voltage drops to less than the cs detection voltage ( ? v det1 ). the cs pin output remains high if the vin pin voltage stays higher than t he cs detection voltage ( ? v det1 ) when the vout pin voltage drops to less than the v sw2 voltage due to an undershoot. 3.3 switch controller the switch controller controls voltage regulator 2 and switch transistor m1. there are two statuses corresponding to the power supply voltage v in (or power supply voltage v bat ) sequence: a special sequence status and a normal sequence stat us. when the power supply voltage v in rises and becomes equal to or exceeds the cs release voltage ( + v det1 ), the normal sequence status is entered, but until then the special sequence status is maintained. (1) special sequence status the switch controller sets voltage regulator 2 on and switch transistor m1 off from the initial status until the primary power supply voltage v in is connected and reaches more than the cs release voltage ( + v det1 ) in order to prevent consumption of t he backup power supply regardless of the v sw1 detector status. this status is called the special sequence status. (2) normal sequence status the switch controller enters the normal sequence st atus from the special sequence status once the primary power supply voltage v in reaches more than the cs release voltage ( + v det1 ). once the normal sequence is entered, the switch c ontroller switches voltage regulator 2 and switch transistor m1 on/off as shown in table 14 according to the power supply voltage v in . the time required for voltage regulator 2 to be sw itched from off to on is a few hundred s at most. during this interval, voltage regulator 2 and switch trans istor m1 may both switch off and the vout pin voltage may drop. to prevent th is, connect a capacitor of 10 f or more to the vout pin. when the vout pin voltage becomes lower than the reset detection voltage, the status returns to the special sequence status. table 14 on/off switching of voltage regulator 2 and switch transistor m1 according to power supply voltage (v in ) power supply voltage (v in ) voltage regulator 2 switch transistor m1 vout pin voltage v in > v sw1 on off v out v in < v sw1 off on v bat ? v dif
battery backup switching ic s-8424a series rev.3.0 _00 22 seiko instruments inc. 3.4 switch transistor m1 voltage regulator 2 is also used to switch from vin pin to vout pin. therefore, no reverse current flows from vout pin to vin pin when voltage regulator 2 is off. the output voltage of voltage regulator 2 can be selected from between 2.3 v and 5.4 v in 0.1 v steps. the on-resistance of switch transistor m1 is 60 or lower (i out = 10 to 500 a). therefore, when m1 is switched on and vout pi n is connected to vbat pin, the voltage drop (v dif ) caused by m1 is 60 i out (output current) at maximum., and v bat ? v dif (max.) is output to the vout pin at minimum. when voltage regulator 2 is on and m1 is off, the leakage current of m1 is kept below 0.1 a max. (v in = 6 v, ta = 25c) with the vbat pin grounded (vss pin). vin vbat vout m1 v dif reg2 figure 9 definition of v dif
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 23 ? transient response 1. line transient response against input voltage variation the input voltage variation differs depending on whether t he power supply input (0 v to 10 v square wave) is applied or the power supply variation (6 v and 10 v squar e waves) is applied. this section describes the ringing waveforms and parameter dependency of each type. the test circuit is shown for reference. power supply application: 0 v to 10 v square wave in p ut volta g e output voltage 0 v 10 v undershoot overshoot s-8424a series fast amplifier p. g. vss vout vin c out r l oscilloscope figure 11 test circuit figure 10 power supply application: 0 v to 10 v square wave power supply application vout pin vro pin input volta g e ( 5 v/div ) 0 v 10 v output volta g e ( 0.5 v/div ) ( 0.5 v/div ) c out = 22 f, i out = 50 ma, ta = 25 c t (100 s/div) input volta g e ( 5 v/div ) 0 v 10 v output volta g e ( 0.5 v/div ) t (100 s/div) c ro = 22 f, i ro = 30 ma, ta = 25 c figure 12 ringing waveform of power supply application (vout pin) figure 13 ringing waveform of power supply application (vro pin)
battery backup switching ic s-8424a series rev.3.0 _00 24 seiko instruments inc. power supply variation: 6 v and 10 v square waves overshoot 6 v 10 v input voltage output voltage undershoot s-8424a series fast amplifier p. g. vss vout vin c out r l oscillo-scope figure 15 test circuit figure 14 power supply variation: 6 v and 10 v square waves power supply variation vout pin input voltage ( 4 v/div ) output volta g e ( 50 mv/div ) 6 v 10 v 10 v 6 v c out = 22 f, i out = 50 ma, ta = 25 c t (100 s/div) figure 16 ringing waveform of po wer supply variation (vout pin) vro pin input volta g e ( 4 v/div ) output volta g e ( 50 mv/div ) 6 v 10 v c ro = 22 f, i ro = 30 ma, ta = 25 c 10 v 6 v t (100 s/div) figure 17 ringing waveform of po wer supply variation (vro pin)
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 25 reference data: dependency of output current (i out ), load capacitance (c out ), input variation width ( v in ), temperature (ta ) for reference, the following pages describe the results of measuring the ringi ng amounts at the vout and vro pins using the output current (i out ), load capacitance (c out ), input variation width ( v in ), and temperature (ta) as parameters. 1.1 i out dependency (1) vout pin (2) vro pin ringing amount (v) i out (ma) 0.00 0.05 0.10 0.15 0.20 0.25 0 20 40 60 c out = 22 f, v in = 6 v and 10 v, ta = 25 c ringing amount (v) i ro (ma) 0.00 0.05 0.10 0.15 0.20 0.25 0 20 40 60 c ro = 22 f, v in = 6 v and 10 v, ta = 25 c 1.2 c out dependency (1) vout pin (2) vro pin ringing amount (v) c out ( f) 0.00 0.10 0.20 0.30 0.40 0.50 0 10 40 50 20 30 i out = 50 ma, v in = 6 v and 10 v, ta = 25 c ringing amount (v) c ro ( f) 0.00 0.10 0.20 0.30 0.40 0.50 0 10 40 50 20 30 i ro = 30 ma, v in = 6 v and 10 v, ta = 25 c overshoot undershoot
battery backup switching ic s-8424a series rev.3.0 _00 26 seiko instruments inc. 1.3 v in dependency v in shows the difference between the low vo ltage fixed to 6 v and the high voltage. for example, v in = 2 v means the difference between 6 v and 8 v. (1) vout pin (2) vro pin ringing amount (v) i out = 50 ma, c out = 22 f, ta = 25 c 0.00 0.05 0.10 0.15 0.20 0.30 v in (v) 0 1 2 3 4 5 0.25 ringing amount (v) i ro = 30 ma, c ro = 22 f, ta = 25 c v in (v) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 1 2 3 4 5 1.4 temperature dependency (1) vout pin (2) vro pin v in = 6 ? 10 v, i out = 50 ma, c out = 22 f 0.00 0.05 0.10 0.15 0.20 0.25 0.30 ?50 0 50 100 ta ( c) ringing amount (v) v in = 6 ? 10 v, i out = 30 ma, c ro = 22 f 0.00 0.05 0.10 0.15 0.20 0.25 0.30 ?50 0 50 100 ringing amount (v) ta ( c) overshoot undershoot
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 27 2. load transient response based on output current fluctuation the overshoot and undershoot are caused in the output voltage if the output curr ent fluctuates between 10 a and 50 ma (v ro is between 10 a and 30 ma) while the input voltage is constant. figure 18 shows the output voltage variation due to the output current. figure 19 shows the test circuit for reference. the latter half of this section describes ringing waveform and parameter dependency. 10 a 50 ma undershoot overshoot output current output current figure 18 output voltage variation due to output current oscilloscope vss vout vin c out s-8424a series figure 19 test circuit figure 20 shows the ringing waveforms at the vout pin and figure 21 shows the ringing waveforms at the vro pin due to the load variation, respectively. vout pin output current output voltage (50 mv/div) 50 ma 10 a t (500 ms/div) 50 ma 10 a v in = 6.0 v, c out = 22 f, ta = 25 c t (50 s/div) figure 20 ringing waveform due to load variation (vout pin) vro pin 30 ma output current output voltage (20 mv/div) 10 a t (20 ms/div) v in = 6.0 v, c ro = 22 f, ta = 25 c t (50 s/div) 30 ma 10 a figure 21 ringing waveform due to load variation (vro pin)
battery backup switching ic s-8424a series rev.3.0 _00 28 seiko instruments inc. reference data: dependency of input voltage (v in ), load capacitance (c out ), output variation width ( i out ), and temperature (ta) 2.1 v in dependency (1) vout pin (2) vro pin c out = 22 f, i out = 50 ma and 10 a, ta = 25 c c ro = 22 f, i ro = 30 ma and 10 a, ta = 25 c ringing amount (v) v in (v) 0.00 0.04 0.06 0.08 0.10 0.12 45 8 10 67 0.02 9 ringing amount (v) v in (v) 0.00 0.04 0.06 0.08 0.10 0.12 45 8 10 67 0.02 9 2.2 c out dependency (1) vout pin (2) vro pin ringing amount (v) c out ( f) 0.00 0.20 0.30 0.40 0.50 0.60 0 10 40 50 20 30 0.10 v in = 6.0 v, i out = 50 ma and 10 a, ta = 25 c ringing amount (v) c ro ( f) 0.00 0.10 0.15 0.20 0.25 0.30 0 10 40 50 20 30 0.05 v in = 6.0 v, i ro = 30 ma and 10 a, ta = 25 c overshoot undershoot
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 29 2.3 i out dependency i out and i ro show the fluctuation between t he low current stabilized at 10 a and the high current. for example, i out = 10 ma means a fluctuation between 10 a and 10 ma. (1) vout pin (2) vro pin i out (ma) c out = 22 f, v in = 6 v, ta = 25 c ringing amount (v) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 102030405060 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 10 20 30 40 50 60 ringiing amount (v) c ro = 22 f, v in = 6.0 v, ta = 25 c i ro (ma) 2.4 temperature dependency (1) vout pin (2) vro pin ta ( c) v in = 6.0 v, i out = 50 ma ? 10 a, c out = 22 f ringing amount (v) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 ? 50 0 50 100 ta ( c) v in = 6.0 v, i ro = 30 ma ? 10 a, c ro = 22 f ringing amount (v) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 ? 50 0 50 100 overshoot undershoot
battery backup switching ic s-8424a series rev.3.0 _00 30 seiko instruments inc. ? standard circuit vro v ro 10 f cs vss 6 v 3 v vin vbat s-8424 a series 0.1 f + + 1 k 10 f v out vout 10 f + preend reset v out 100 k 100 k v out 100 k v out figure 22 standard circuit caution 1. be sure to add a 10 f or more capacitor to the vout and vro pins. 2. the above connections and values will not guarantee correct operation. before setting these values, perform sufficient evaluation on the application to be actually used.
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 31 ? precautions ? in applications with small i ro or i out , the output voltages v ro and v out may rise, causing the load stability to exceed standard levels. set i ro and i out to 10 a or more. ? attach the proper capacitor to the vout pin to prevent the reset voltage detector (which monitors the vout pin) from coming active due to undershoot. ? watch for overshoot and ensure it does not exceed the rati ngs of the ic chips and/or capacitors attached to the vro and vout pins. ? add a 10 f or more capacitor to the vout and vro pins. ? when v in rises from the voltage more than v sw1 , a low pulse of less than 4 ms flows through the preend pin even when v bat is more than the preend release voltage. thus when monitoring the preend pin, make sure to take the 4 ms interval or more after the rise of v in . ? do not apply an electrostatic discharge to this ic that exceeds the performance ratings of the built-in electrostatic protection circuit. ? application circuits 1. when using timer micro controllers for backup to display preend in the primary cpu a ddress data vro 10 f reset cs 6 v vin vbat vout 3 v 0.1 f 1 k 10 f vss cs reset vcc 100 k 100 k timer microcontroller s-8424 a series reset vcc main cpu + + + 10 f preend int 100 k figure 23 application circuit 1
battery backup switching ic s-8424a series rev.3.0 _00 32 seiko instruments inc. 2. when using secondary battery as backup battery vro 10 f reset cs vss 6 v vin vbat vout s - 8424 a series + + 3 v 0.1 f vcc int microcontroller 10 f + 100 k 10 f 100 k reset figure 24 application circuit 2 remark the backup battery can be floating-rec harged by using voltage regulator 1. 3. memory card 100 k vss vin s-8424 a series reset vbat cs vout + card unit + 0.1 f 3 v sram cs v in bdt1 cs 10 f 10 f preend bdt2 100 k 100 k figure 25 application circuit 3 caution the above connections and values will not guarantee correct operation. before setting these values, perform sufficient evaluation on the application to be actually used.
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 33 ? characteristics 1. voltage regulator unit (v ro = v out = 3.0 v) 1.1 input voltage (v in ) vs. output voltage (v ro ) characteristics (reg1) (1) ta = 85 c (2) ta = 25 c i ro = 10 ma, 30 ma, 50 ma, 70 ma, 90 ma i ro = 10 ma, 30 ma, 50 ma, 70 ma, 90 ma 2.0 2.4 2.8 3.2 2.0 3.0 4.0 5.0 v in (v) v ro (v) i ro = 90 ma i ro = 10 ma 2.0 2.4 2.8 3.2 2.0 3.0 4.0 5.0 v in (v) v ro (v) i ro = 90 ma i ro = 10 ma (3) ta = ? 40 c i ro = 10 ma, 30 ma, 50 ma, 70 ma, 90 ma 2.0 2.4 2.8 3.2 2.0 3.0 4.0 5.0 v in (v) v ro (v) i ro = 10 ma i ro = 90 ma 1.2 input voltage (v in ) vs. output voltage (v out ) characteristics (reg2) (1) ta = 85 c (2) ta = 25 c i out = 10 ma, 30 ma, 50 ma, 70 ma, 90 ma i out = 10 ma, 30 ma, 50 ma, 70 ma, 90 ma 2.0 2.4 2.8 3.2 2.0 3.0 4.0 5.0 v in (v) v out (v) i out = 90 ma i out = 10 ma 2.0 2.4 2.8 3.2 2.0 3.0 4.0 5.0 v in (v) v out (v) i out = 90 ma i out = 10 ma (3) ta = ? 40 c i out = 10 ma, 30 ma, 50 ma, 70 ma, 90 ma 2.0 2.4 2.8 3.2 2.0 3.0 4.0 5.0 v in (v) v out (v) i out = 10 ma i out = 90 ma
battery backup switching ic s-8424a series rev.3.0 _00 34 seiko instruments inc. 1.3 output current (i ro ) vs. dropout voltage (v drop1 ) characteristics 1.4 output current (i out ) vs. dropout voltage (v drop2 ) characteristics 0.0 0.2 0.4 0.6 0.8 1.0 0 0.02 0.04 0.06 i ro (a) v drop1 (v) ta = 85 c 25 c ? 40 c 0.0 0.2 0.4 0.6 0.8 1.0 0 0.02 0.04 0.06 i out (a) v drop2 (v) ta = 85 c 25 c ? 40 c 1.5 output current (i ro ) vs. output voltage (v ro ) characteristics 1.6 output current (i out ) vs. output voltage (v out ) characteristics 2.85 2.95 3.05 3.15 3.25 1 100 10 m 1 i ro (a) v out (v) ta = ? 40 c 25 c 85 c v in = 6 v 2.85 2.95 3.05 3.15 3.25 1 100 10 m 1 i ro (a) v ro (v) ta = ? 40 c 25 c 85 c v in = 6 v 1.7 output voltage (v ro ) temperature characteristics 1.8 output voltage (v out ) temperature characteristics ? 30 ? 10 ? 20 0 30 20 10 ? 40 ? 20 0 20 40 60 80 100 ta ( c) v ro (mv) v in = 6 v, i ro = 30 ma based on v ro voltage when ta is 25 c ? 30 ? 10 ? 20 0 30 20 10 ? 40 ? 20 0 20 40 60 80 100 ta ( c) v out (mv) v in = 6 v, i out = 50 ma based on v out voltage when ta is 25 c 1.9 input stability (v ro ) temperature characteris tics 1.10 input stability (v out ) temperature characteristics 0 15 10 5 20 ta ( c) v ro2 (mv) ? 40 ? 20 0 20 40 8060 100 0 15 10 5 20 ta ( c) v out2 (mv) ? 40 ? 20 0 20 40 8060 100 1.11 load stability (v ro ) temperature characteris tics 1.12 load stability (v ro ) temperature characteristics ta ( c) 0 10 20 30 40 v ro1 (mv) ? 40 ? 20 02040 80 60 100 ta ( c) 0 10 20 30 40 v out (mv) ? 40 ? 20 0 20 40 8060 100
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 35 2. voltage detector 2.1 cs voltage detector ( ? v det1 = 3.3 v) (1) detection voltage ( ? v det1 ) temperature characteristics (2) output current (i sink ) characteristics ? 20 ? 10 0 10 20 cs (mv) ta ( c) ? 40 ? 20 0 20 40 8060 100 based on cs ( ? v det1 ) voltage when ta is 25 c 0 5 10 15 20 25 30 0.0 1.0 2.0 3.0 4.0 v ds (v) cs i sink (ma) v in = 3 v v in = 1.7 v ta = 25 c (3) output current (i sink ) temperature characteristics 0 2 4 6 8 10 cs i sink (ma) ta ( c ) ? 40 ? 20 0 20 40 8060 100 v in = v bat = 2.0 v, v ds = 0.5 v 2.2 reset voltage detector ( ? v det2 = 2.2 v) (1) detection voltage ( ? v det2 ) temperature characteristics (2) output current (i sink ) characteristics ? 20 ? 10 0 10 20 reset (mv) ta ( c ) ? 40 ? 20 0 20 40 8060 100 based on reset ( ? v det2 ) voltage when ta i s 2 5 c 0 5 10 15 20 25 30 0.0 1.0 2.0 3.0 4.0 v ds (v) reset i sink (ma) v in = 1.7 v v in = 3 v ta = 25 c (3) output current (i sink ) temperature characteristics 0 4 8 reset i sink (ma) ta ( c) ? 40 ? 20 0 20 40 80 60 100 2 6 10 v in = v bat = 2.0 v, v ds = 0.5 v
battery backup switching ic s-8424a series rev.3.0 _00 36 seiko instruments inc. 2.3 preend voltage detector ( ? v det3 = 2.6 v) (1) detection voltage ( ? v det3 ) temperature characteristics (2) output current (i sink ) characteristics ? 20 ? 10 0 10 20 preend (mv) ? 40 ? 20 0 20 40 8060 100 v ds (v) based on preend ( ? v det3 ) voltage when ta i s 2 5 c v in = 3 v v in = 1.7 v v ds (v) 0 5 10 15 20 25 30 0.0 1.0 2.0 3.0 4.0 preend i sink (ma) ta = 25 c (3) output current (i sink ) temperature characteristics v in = v bat = 2.0 v, v ds = 0.5 v 10 0 4 8 preend i sink (ma) ta ( c ) ? 40 ? 20 0 20 40 8060 100 2 6
battery backup switching ic rev.3.0 _00 s-8424a series seiko instruments inc. 37 3. switch unit 3.1 switch voltage (v sw1 ) temperature characteristics 3.2 cs output inhibit voltage (v sw2 ) temperature characteristics v sw1 (mv) ta ( c) ? 40 ? 20 0 20 40 8060 100 ? 20 ? 10 0 10 20 based on v sw1 voltage when ta is 25 c v sw2 (mv) ta ( c) ? 40 ? 20 0 20 40 8060 100 ? 20 ? 10 0 10 20 based on v sw2 voltage when ta is 25 c 3.3 input voltage (v bat ) vs. v bat switch resistance(r sw ) characteristics 3.4 v bat switch resistance (r sw ) temperature characteristics 0 10 20 30 40 50 60 12345 v bat (v) r sw ( ) i out = 500 a r sw ( ) ta ( c) ? 40 ? 20 0 20 40 8060 100 0 10 20 30 40 50 60 v bat = 3 v, i out = 500 a 3.5 v bat switch leakage current (i leak ) temperature characteristics 0 10 20 30 i leak (na) ta ( c) ? 40 ? 20 0 20 40 8060 100 5 15 25 v in = 6.0 v, v bat = 0 v
battery backup switching ic s-8424a series rev.3.0 _00 38 seiko instruments inc. 4. consumption current 4.1 v in vs. v in consumption current (i ss1 ) characteristics 4.2 v bat vs. v bat2 consumption current (i bat2 ) characteristics ta = 85 c 25 c ? 40 c 0 4 8 12 16 024681012141618 v in (v) i ss1 ( a) 0.0 0.5 1.0 1.5 2.0 2.0 2.4 2.8 3.2 3.6 4.0 v bat (v) i bat2 ( a) ta = 85 c 25 c ? 40 c 4.3 consumption current temperature characteristics (1) i ss1 (2) i bat2 0 4 8 12 16 i ss1 ( a) ta ( c) ? 40 ? 20 0 20 40 8060 100 v in = 6.0 v, v bat = 3.0 v 0.0 0.5 1.0 1.5 2.0 i bat2 ( a) ta ( c) ? 40 ? 20 0 20 40 8060 100 v in = open, v bat = 3.0 v
 
          !!    !! !"#  $ % & %  ' ($ '# ! ! ) $  
 
    *!$$#  $ ' #  $  # ! *!$$ & !   $ +)), %#  $ ! ) $  ) # !  --   
.  ./  
 !  
 ! & )  ' (( 
 
    0.1 --.213  .0/.  4 ! '# $ *!%# $ *'!#  !%)#! !"$#! %5 67  4 0  4 ! 
 
    0.1 --.213  .0/. '# $ *!%# $ *'!#  !%)#! !"$#! )5 67  4 0  4 !!   4 !!
  
            !"#$ !" !%  &
'(&)  &
'(&)  *'((&+, ) !"!"
     '      
    '  !"#$ !" !%  &
'( ) &
'( ) *'(( .### . 51 1#%!
       
  67 8  !"#$ !" !%  &
'(9) &
'(9) *'((92 !2.#:1 1#.4!: ! - %!#.2 .#
www.sii-ic.com ? the information described herein is subject to change without notice. ? seiko instruments inc. is not responsible for any pr oblems caused by circuits or diagrams described herein whose related industrial properties, patents, or ot her rights belong to third parties. the application circuit examples explain typical applications of the products, and do not guarant ee the success of any specific mass-production design. ? when the products described herein are regulated produ cts subject to the wassenaar arrangement or other agreements, they may not be exported without authoriz ation from the appropriate governmental authority. ? use of the information described he rein for other purposes and/or repr oduction or copying without the express permission of seiko instrum ents inc. is strictly prohibited. ? the products described herein cannot be used as par t of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of seiko instruments inc. ? although seiko instruments inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may oc cur. the user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.


▲Up To Search▲   

 
Price & Availability of S-8424AAAPA-TF-G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X